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left and on the right. The results showed that 
in each one of the pairs, most of the subjects 
selected the form "q is similar top." Thus, the 
more salient stimulus was generally chosen as 
the referent rather than the subject of similar­
ity statements. 

To test for asymmetry in judgments of 
similarity, we presented two groups of 67 sub­
jects each with the same 16 pairs of figures and 
asked the subjects to rate (on a 20-point scale) 
the degree to which the figure on the left was 
similar to the figure on the right. The two 
groups received identical booklets, except that 
the left and right positions of the figures in 
each pair were reversed. The results showed 
that the average s(q,p) across all subjects and 
pairs was significantly higher than the average 
s(p,q). At test for correlated samples yielded 
t(15) = 2.94, p < .01. Furthermore, in both 
sets the average asymmetry scores, computed 
as above for each subject, were significantly 
positive: In the first set t(131) = 2.96, p < .Ql, 
and in the second set t(131) = 2.79, p < .01. 

Similarity of Letters 

A common measure of similarity between 
stimuli is the probability of confusing them in 
a recognition or an identification task: The 
more similar the stimuli, the more likely they 
are to be confused. While confusion probabili­
ties are often asymmetric (i.e., the probability 
of confusing a with b is different from the 
probability of confusing b with a), this effect 
is typically attributed to a response bias. To 
eliminate this interpretation of asymmetry, 
one could employ an experimental task where 
the subject merely indicates whether the two 
stimuli presented to him (sequentially or 
simultaneously) are identical or not. This pro­
cedure was employed by Yoav Cohen and the 
present author in a study of confusion among 
block letters. 

The following eight block letters served as 
stimuli: I, C, n, 0, F, E, R, B. All pairs 
of letters were displayed on a cathode-ray tube, 
side by side, on a noisy background. The 
letters were presented sequentially, each for 
approximately 1 msec. The right letter always 
followed the left letter with an interval of 630 
msec in between. After each presentation the 
subject pressed one of two keys to indicate 
whether the two letters were identical or not. 

Figure 3. Examples of pairs of figures used to test the 
prediction of asymmetry. The top two figures are ex­
amples of a pair (from the first set) that differs in good­
ness of form. The bottom two are examples of a pair 
(from the second set) that differs in complexity. 

A total of 32 subjects participated in the 
experiment. Each subject was tested individ­
ually. On each trial, one letter (known in 
advance) served as the standard. For one half 
of the subjects the standard stimulus always 
appeared on the left, and for the other half of 
the subjects the standard always appeared on 
the right. Each one of the eight letters served 
as a standard. The trials were blocked into 
groups of 10 pairs in which the standard was 
paired once with each of the other letters and 
three times with itself. Since each letter served 
as a standard in one block, the entire design 
consisted of eight blocks of 10 trials each. 
Every subject was presented with three repli­
cations of the entire design (i.e., 240 trials). 
The order of the blocks in each design and the 
order of the letters within each block were 
randomized. 

According to the present analysis, people 
compare the variable stimulus, which serves 
the role of the subject, to the standard (i.e., 
the referent). The choice of standard, there­
fore, determines the directionality of the com­
parison. A natural partial ordering of the 
letters with respect to prominence is induced 
by the relation of inclusion among letters. 
Thus, one letter is assumed to have a larger 
measure than another if the former includes 
the latter. For example, E includes F and I 
but not D. For all 19 pairs in which one letter 
includes the other, let p denote the more 
prominent letter and q denote the less promi-
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nent letter. Furthermore, let s(a,b) denote the 
percentage of times that the subject judged 
the variable stimulus a to be the same as the 
standard b. 

It follows from the contrast model, with 
a > {J, that the proportion of "same" responses 
should be larger when the variable is included 
in the standard than when the standard is 
included in the variable, that is, s(q,p) > 
s(p,q). This prediction was borne out by the 
data. The average s(q,p) across all subjects 
and trials was 17.1 %, whereas the average 
s(p,q) across all subjects and trials was 12.4%. 
To obtain a statistical test, we computed for 
each subject the difference between s(q,p) and 
s (p,q) across all trials. The difference was 
significantly positive, t(31) = 4.41, p < .001. 
These results demonstrate that the prediction 
of directional asymmetry derived from the 
contrast model applies to confusion data and 
not merely to rated similarity. 

Similarity of Signals 

Rothkopf (1957) presented 598 subjects with 
all ordered pairs of the 36 Morse Code signals 
and asked them to indicate whether the two 
signals in each pair were the same or not. The 
pairs were presented in a randomized order 
without a fixed standard. Each subject judged 
about one fourth of all pairs. 

Let s(a,b) denote the percentage of "same" 
responses to the ordered pair (a,b), i.e., the 
percentage of subjects that judged the first 
signal a to be the same as the second signal b. 
Note that a and b refer here to the first and 
second signal, and not to the variable and the 
standard as in the previous section. Obviously, 
Morse Code signals are partially ordered ac­
cording to temporal length. For any pair of 
signals that differ in temporal length, let p and 
q denote, respectively, the longer and shorter 
element of the pair. 

From the total of 555 comparisons between 
signals of different length, reported in Rothkopf 
(1957), s(q,p) exceeds s(p,q) in 336 cases, 
s(p,q) exceeds s(q,p) in 181 cases, and s(q,p) 
equals s(p,q) in 38 cases, p < .001, by sign 
test. The average difference between s(q,p) 
and s(p,q) across all pairs is 3.3%, which is 
also highly significant. A t test for correlated 
samples yields t(554) = 9.17, p < .001. 

The asymmetry effect is enhanced when we 
consider only those comparisons in which one 
signal is a proper subsequence of the other. 
(For example, · · is a subsequence of · 0

- as 
well as of ·- o). From a total of 19S comparisons 
of this type, s(q,p) exceeds s(p,q) in 128 cases, 
s(p,q) exceeds s(q,p) in SS cases, and s(q,p) 
equals s(p,q) in 12 cases, p < .001 by sign 
test. The average difference between s(q,p) 
and s(p,q) in this case is 4.7%, t(194) = 7.S8, 
p < .001. 

A later study following the same experi­
mental paradigm with somewhat different sig­
nals was conducted by Wish (1967). His sig­
nals consisted of three tones separated by two 
silent intervals, where each component (i.e., 
a tone or a silence) was either short or long. 
Subjects were presented with all pairs of 32 
signals generated in this fashion and judged 
whether the two members of each pair were 
the same or not. 

The above analysis is readily applicable to 
Wish's (1967) data. From a total of 386 com­
parisons between signals of different length, 
s(q,p) exceeds s(p,q) in 241 cases, s(p,q) ex­
ceeds s ( q,p) in 117 cases, and s ( q,p) equals 
s(p,q) in 28 cases. These data are clearly 
asymmetric, p < .001 by sign test. The aver­
age difference between s(q,p) and s(p,q) is 
S.9%, which is also highly significant, t(38S) 
= 9.23, p < .001. 

In the studies of Rothkopf and Wish there 
is no a priori way to determine the directional­
ity of the comparison, or equivalently to iden­
tify the subject and the referent. However, if 
we accept the focusing hypothesis (a > fJ) and 
the assumption that longer signals are more 
prominent than shorter ones, then the direc­
tion of the observed asymmetry indicates that 
the first signal serves as the subject that is 
compared with the second signal that serves 
the role of the referent. Hence, the direc­
tionality of the comparison is determined, ac­
cording to the present analysis, from the 
prominence ordering of the stimuli and the 
observed direction of asymmetry. 

Rnsch' s Data 

Rosch (1973, 197S) has articulated and sup­
ported the view that perceptual and semantic 
categories are naturally formed and defined in 
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terms of focal points, or prototypes. Because 
of the special role of prototypes in the forma­
tion of categories, she hypothesized that (i) 
in sentence frames involving hedges such as 
"a is essentially b," focal stimuli (i.e., proto­
types) appear in the second position; and (ii) 
the perceived distance from the prototype to 
the variant is greater than the perceived dis­
tance from the variant to the prototype. To 
test these hypotheses, Rosch (1975) used three 
stimulus domains: calor, line orientation, and 
number. Prototypical colors were focal (e.g., 
pure red), while the variants were either non­
focal (e.g., off-red) or less saturated. Vertical, 
horizontal, and diagonal lines served as proto­
types for line orientation, and lines of other 
angles served as variants. Multiples of 10 
(e.g., 10, SO, 100) were taken as prototypical 
numbers, and other numbers (e.g., 11, 52, 103) 
were treated as variants. 

Hypothesis (i) was strongly confirmed in all 
three domains. When presented with sentence 
frames such as "-- is virtually __ ," sub­
jects generally placed the prototype in the 
second blank and the variant in the first. For 
instance, subjects preferred the sentence "103 
is virtually 100" to the sentence "100 is virtu­
ally 103." To test hypothesis (ii), one stimulus 
(the standard) was placed at the origin of a 
semicircular board, and the subject was in­
structed to place the second (variable) stimulus 
on the board so as "to represent his feeling of 
the distance between that stimulus and the 
one fixed at the origin." As hypothesized, the 
measured distance between stimuli was signifi­
cantly smaller when the prototype, rather than 
the variant, was fixed at the origin, in each of 
the three domains. 

If focal stimuli are more salient than non­
focal stimuli, then Rosch's findings support 
the present analysis. The hedging sentences 
(e.g., "a is roughly b") can be regarded as a 
particular type of similarity statements. In­
deed, the hedges data are in perfect agreement 
with the choice of similarity statements. Fur­
thermore, the observed asymmetry in distance 
placement follows from the present analysis of 
asymmetry and the natural assumptions that 
the standard and the variable serve, respec­
tively, as referent and subject in the distance­
placement task. Thus, the placement of b at 

distance t from a is interpreted as saying that 
the (perceived) distance from b to a equals t. 

Rosch (1975) attributed the observed asym­
metry to the special role of distinct prototypes 
(e.g., a perfect square or a pure red) in the 
processing of information. In the present 
theory, on the other hand, asymmetry is 
explained by the relative salience of the 
stimuli. Consequently, it implies asymmetry 
for pairs that do not include the prototype 
(e.g., two levels of distortion of the same 
form). If the concept of prototypicality, how­
ever, is interpreted in a relative sense (i.e., a 
is more prototypical than b) rather than in an 
absolute sense, then the two interpretations of 
asymmetry practically coincide. 

Discussion 

The conjunction of the contrast model and 
the focusing hypothesis implies the presence 
of asymmetric similarities. This prediction was 
confirmed in several experiments of perceptual 
and conceptual similarity using both judg­
mental methods (e.g., rating) and behavioral 
methods (e.g., choice). 

The asymmetries discussed in the previous 
section were observed in comparative tasks in 
which the subject compares two given stimuli 
to determine their similarity. Asymmetries 
were also observed in production tasks in which 
the subject is given a single stimulus and asked 
to produce the most similar response. Studies 
of pattern recognition, stimulus identification, 
and word association are all examples of pro­
duction tasks. A common pattern observed in 
such studies is that the more salient object 
occurs more often as a response to the less 
salient object than vice versa. For example, 
"tiger" is a more likely associate to "leopard" 
than "leopard" is to "tiger." Similarly, Garner 
(1974) instructed subjects to select from a 
given set of dot patterns one that is similar­
but not identical-to a given pattern. His re­
sults show that "good" patterns are usually 
chosen as responses to "bad" patterns and not 
conversely. 

This asymmetry in production tasks has 
commonly been attributed to the differential 
availability of responses. Thus, "tiger" is a 
more likely associate to "leopard" than vice 
versa, because "tiger" is more common and 
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hence a more available response than "leop­
ard." This account is probably more applicable 
to situations where the subject must actually 
produce the response (as in word association 
or pattern recognition) than to situations 
where the subject merely selects a response 
from some specified set (as in Garner's task). 

Without questioning the importance of re­
sponse availability, the present theory suggests 
another reason for the asymmetry observed in 
production tasks. Consider the following trans­
lation of a production task to a question-and­
answer scheme. Question: What is a like? 
Answer: a is like b. If this interpretation is 
valid and the given object a serves as a subject 
rather than as a referent, then the observed 
asymmetry of production follows from the 
present theoretical analysis, since s (a,b) > 
s(b,a) whenever f(B) > f(A). 

In summary, it appears that proximity data 
from both comparative and production tasks 
reveal significant and systematic asymmetries 
whose direction is determined by the relative 
salience of the stimuli. Nevertheless, the sym­
metry assumption should not be rejected al­
together. It seems to hold in many contexts, 
and it serves as a useful approximation in 
many others. It cannot be accepted, however, 
as a universal principle of psychological 
similarity. 

Common and Distinctive Features 

In the present theory, the similarity of 
objects is expressed as a linear combination, 
or a contrast, of the measures of their common 
and distinctive features. This section investi­
gates the relative impact of these components 
and their effect on the relation between the 
assessments of similarity and difference. The 
discussion concerns only symmetric tasks, 
where a = {3, and hence s(a,b) = s(b,a). 

Elicitation of Features 

The first study employs the contrast model 
to predict the similarity between objects from 
features that were produced by the subjects. 
The following 12 vehicles served as stimuli: 
bus, car, truck, motorcycle, train, airplane, 
bicycle, boat, elevator, cart, raft, sled. One 
group of 48 subjects rated the similarity• be-

tween all 66 pairs of vehicles on a scale from 
1 (no similarity) to 20 (maximal similarity). 
Following Rosch and Mervis (1975), we in­
structed a second group of 40 subjects to list 
the characteristic features of each one of the 
vehicles. Subjects were given 70 sec to list the 
features that characterized each vehicle. Dif­
ferent orders of presentation were used for 
different subjects. 

The number of features per vehicle ranged 
from 71 for airplane to 21 for sled. Altogether, 
324 features were listed by the subjects, of 
which 224 were unique and 100 were shared 
by two or more vehicles. For every pair of 
vehicles we counted the number of features 
that were attributed to both (by at least one 
subject), and the number of features that were 
attributed to one vehicle but not to the other. 
The frequency of subjects that listed each 
common or distinctive feature was computed. 

In order to predict the similarity between 
vehicles from the listed features, the measures 
of their common and distinctive features must 
be defined. The simplest measure is obtained 
by counting the number of common and dis­
tinctive features produced by the subjects. 
The product-moment correlation between the 
(average) similarity of objects and the number 
of their common features was .68. The cor­
relation between the similarity of objects and 
the number of their distinctive features was 
- .36. The multiple correlation between simi­
larity and the numbers of common and dis­
tinctive features (i.e., the correlation between 
similarity and the contrast model) was .72. 

The counting measure assigns equal weight 
to all features regardless of their frequency of 
mention. To take this factor into account, let 
Xa denote the proportion of subjects who at­
tributed feature X to object a, and let Nx de­
note the number of objects that share feature 
X. For any a,b, define the measure of their 
common features by f(Ar\ B) = 2;XaXb/Nx, 
where the summation is over all X in A(\ B, 
and the measure of their distinctive features 
by 

f(A- B)+ f(B- A)= 2;Ya + 2;Zb 

where the summations range over all YEA - B 
and ZEB - A, that is, the distinctive features 
of a and b, respectively. The correlation 
between similarity and the above measure 
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of the common features was .84; the corre~ 
lation between similarity and the above 
measure of the distinctive features was - .64. 
The multiple correlation between similarity 
and the measures of the common and the dis~ 
tinctive features was .87. 

Note that the above methods for defining the 
measure f were based solely on the elicited 
features and did not utilize the similarity data 
at all. Under these conditions, a perfect cor~ 
relation between the two should not be ex~ 

pected because the weights associated with 
the features are not optimal for the prediction 
of similarity. A given feature may be fre~ 
quently mentioned because it is easily labeled 
or recalled, although it does not have a great 
impact on similarity, and vice versa. Indeed, 
when the features were scaled using the addi­
tive tree procedure (Sattath & Tversky, in 
press) in which the measure of the features is 
der.ived from the similarities between the 
objects, the correlation between the data and 
the model reached .94. 

The results of this study indicate that (i) 
it is possible to elicit from subjects detailed 
features of semantic stimuli such as vehicles 
(see Rosch & Mervis, 197 5) ; (ii) the listed 
features can be used to predict similarity ac­
cording to the contrast model with a reason­
able degree of success; and (iii) the prediction 
of similarity is improved when frequency of 
mention and not merely the number of fea~ 

lures is taken into account. 

Similarity versus Difference 

It has been generally assumed that judg~ 
ments of similarity and difference are comple~ 
mentary; that is, judged difference is a linear 
function of judged similarity with a slope of 
-1. This hypothesis has been confirmed in 
several studies. For example, Hosman and 
Kuennapas (1972) obtained independent judg­
ments of similarity and difference for all pairs 
of lowercase letters on a scale from 0 to 100. 
The product-moment correlation between the 
judgments was - .98, and the slope of the 
regression line was - .91. We also collected 
judgments of similarity and difference for 21 
pairs of countries using a 20-point rating scale. 
The sum of the two judgments for each pair 
was quite close to 20 in all cases. The product-

moment correlation between the ratings was 
again - .98. This inverse relation between 
similarity and difference, however, does not 
always hold. 

Naturally, an increase in the measure of the 
common features increases similarity and de­
creases difference, whereas an increase in the 
measure of the distinctive features decreases 
similarity and increases difference. However, 
the relative weight assigned to the common 
and the distinctive features may differ in the 
two tasks. In the assessment of similarity be­
tween objects the subject may attend more to 
their common features, whereas in the assess­
ment of difference between objects the subject 
may attend more to their distinctive features. 
Thus, the relative weight of .the common 
features will be greater in the former task than 
in the latter task. 

Let d(a,b) denote the perceived difference 
between a and b. Suppose d satisfies the 
axioms of the present theory with the reverse 
inequality in the monotonicity axiom, that is, 
d(a,b) ~ d(a,c) whenever A(l B :::>An C, 
A - B C A - C, and B - A C C - A. Fur­
thermore, suppose s also satisfies the present 
theory and assume (for simplicity) that both 
d and s are symmetric. According to the 
representation theorem, therefore, there exist 
a nonnegative scale f and nonnegative con­
stants 8 and ~ such that for all a,b,c,e, 

s(a,b) > s(c,e) iff 
8f(A(l B)- f(A- B)- f(B- A)> 

8f(C(l E)- f(C- E)- f(E- C), 

and 

d(a,b) > d(c,e) iff 
f(A- B)+ f(B- A)- ~f(Af\ B)> 

f(C- E)+ f(E- C) - ~f(C f\ E). 

The weights associated with the distinctive 
features can be set equal to 1 in the symmetric 
case with no loss of generality. Hence, 8 and~ 
reflect the relative weight of the common fea­
tures in the assessment of similarity and dif­
ference, respectively. 

Note that if (J is very large then the similarity 
ordering is essentially determined by the 
common features. On the other hand, if ~ is 
very small, then the difference ordering is 
determined primarily by the distinctive fea-
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tures. Consequently, both s(a,b) > s(c,e) and 
d(a,b) > d(c,e) may be obtained whenever 

f(Arl B)> f(Crl E) 
and 

f(A- B) + f(B - A) > 
f(C- E)+ f(E- C). 

That is, if the common features are weighed 
more heavily in judgments of similarity than 
in judgments of difference, then a pair of 
objects with many common and many dis­
tinctive features may be perceived as both 
more similar and more different than another 
pair of objects with fewer common and fewer 
distinctive features. 

To test this hypothesis, 20 sets of four 
countries were constructed on the basis of a 
pilot test. Each set included two pairs of 
countries: a prominent pair and a nonpromi­
nent pair. The prominent pairs consisted of 
countries that were well known to our subjects 
(e.g., USA-USSR, Red China-Japan). The 
nonprominent pairs consisted of countries that 
were known to the subjects, but not as well as 
the prominent ones (e.g., Tunis-Morocco, 
Paraguay-Ecuador). All subjects were pre­
sented with the same 20 sets. One group of 
30 subjects selected between the two pairs in 
each set the pair of countries that were more 
similar. Another group of 30 subjects selected 
between the two pairs in each set the pair of 
countries that were more different. 

Let IT. and lld denote, respectively, the per­
centage of choices where the prominent pair 
of countries was selected as more similar or as 
more different. If similarity and difference are 
complementary (i.e., 0 = X), then n. + Ild 
should equal 100 for all pairs. On the other 
hand, if (J > X, then n. + Ild should exceed 
100. The average value of n. + nd, across all 
sets, was 113.5, which is significantly greater 
than 100, t(59) = 3.27, p < .01. 

Moreover, on the average, the prominent 
pairs were selected more frequently than the 
nonprominent pairs in both the similarity and 
the difference tasks. For example, 67% of the 
subjects in the similarity group selected West 
Germany and East Germany as more similar 
to each other than Ceylon and Nepal, while 
70% of the subjects in the difference group 
selected West Germany and East Germany as 

more different from each other than Ceylon 
and Nepal. These data demonstrate how the 
relative weight of the common and the dis­
tinctive features varies with the task and sup­
port the hypothesis that people attend more 
to the common features in judgments of simi­
larity than in judgments of difference. 

Similarity in Context 

Like other judgments, similarity depends on 
context and frame of reference. Sometimes the 
relevant frame of reference is specified explic­
itly, as in the questions, "How similar are 
English and French with respect to sound?" 
"What is the similarity of a pear and an apple 
with respect to taste?" In general, however, the 
relevant feature space is not specified explic­
itly but rather inferred from the general 
context. 

When subjects are asked to assess the simi­
larity between the USA and the USSR, for 
instance, they usually assume that the relevant 
context is the set of countries and that the 
relevant frame of reference includes all politi­
cal, geographical, and cultural features. The 
relative weights assigned to these features, of 
course, may differ for different people. With 
natural, integral stimuli such as countries, 
people, colors, and sounds, there is relatively 
little ambiguity regarding the relevant feature 
space. However, with artificial, separable 
stimuli, such as figures varying in color and 
shape, or lines varying in length and orienta­
tion, subjects sometimes experience difficulty 
in evaluating overall similarity and occasion­
ally tend to evaluate similarity with respect to 
one factor or the other (Shepard, 1964) or 
change the relative weights of attributes with 
a change in context (Torgerson, 1965). 

In the present theory, changes in context or 
frame of reference correspond to changes in 
the measure of the feature space. When asked 
to assess the political similarity between coun­
tries, for example, the subject presumably 
attends to the political aspects of the countries 
and ignores, or assigns a weight of zero to, 
all other features. In addition to such restric­
tions of the feature space induced by explicit 
or implicit instructions, the salience of features 
and hence the similarity bf objects are also 
influenced by the effective context (i.e., the 
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Figure 4. Two sets of schematic faces used to test the diagnosticity hypothesis. The percentage of sub­
jects who selected each face (as most similar to the target) is presented below the face. 
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set of objects under consideration). To under­
stand this process, let us examine the factors 
that determine the salience of a feature and 
its contribution to the similarity of objects. 

The Diagnosticity Principle 

The salience (or the measure) of a feature is 
determined by two types of factors: intensive 
and diagnostic. The former refers to factors 
that increase intensity or signal-to-noise ratio, 
such as the brightness of a light, the loudness 
of a tone, the saturation of a color, the size 
of a letter, the frequency of an item, the 
clarity of a picture, or the vividness of an 
image. The diagnostic factors refer to the 
classificatory significance of features, that is, 
the importance or prevalence of the classifica­
tions that are based on these features. Unlike 
the intensive factors, the diagnostic factors 
are highly sensitive to the particular object 
set under study. For example, the feature 
"real" has no diagnostic value in the set of 
actual animals since it is shared by all actual 
animals and hence cannot be used to classify 
them. This feature, however, acquires con­
siderable diagnostic value if the object set is 
extended to include legendary animals, such 
as a centaur, a mermaid, or a phoenix. 

When faced with a set of objects, people 
often sort them into clusters to reduce infor­
mation load and facilitate further processing. 
Clusters are typically selected so as to maxi­
mize the similarity of objects within a cluster 
and the dissimilarity of objects from different 
clusters. Hence, the addition and/or deletion 
of objects can alter the clustering of the re­
maining objects. A change of clusters, in turn, 
is expected to increase the diagnostic value of 
features on which the new clusters are based, 
and therefore, the similarity of objects that 
share these features. This relation between 
similarity and grouping-called the diagnosti­
city hypothesis-is best explained in terms of a 
concrete example. Consider the two sets of 
four schematic faces (displayed in Figure 4), 
which differ in only one of their elements 
(p and q). 

The four faces of each set were displayed in 
a row and presented to a different group of 25 
subjects who were instructed to partition them 
into two pairs. The most frequent partition of 

Set 1 was c and p (smiling faces) versus a and 
b (nonsmiling faces). The most common parti­
tion of Set 2 was b and q (frowning faces) 
versus a and c (nonfrowning faces). Thus, the 
replacement of p by q changed the grouping 
of a: In Set 1 a was paired with b, while in 
Set 2 a was paired with c. 

According to the above analysis, smiling has 
a greater diagnostic value in Set 1 than in 
Set 2, whereas frowning has a greater diagnos­
tic value in Set 2 than in Set 1. By the diagnos­
ticity hypothesis, therefore, similarity should 
follow the grouping. That is, the similarity of 
a (which has a neutral expression) to b (which 
is frowning) should be greater in Set 1, where 
they are grouped together, than in Set 2, 
where they are grouped separately. Likewise, 
the similarity of a to c (which is smiling) 
should be greater in Set 2, where they are 
grouped together, than in Set 1, where they 
are not. 

To test this prediction, two different groups 
of 50 subjects were presented with Sets 1 and 
2 (in the form displayed in Figure 4) and 
asked to select one of the three faces below 
(called the choice set) that was most similar 
to the face on the top (called the target). 
The percentage of subjects who selected each 
of the three elements of the choice set is 
presented below the face. The results con­
firmed the diagnosticity hypothesis: b was 
chosen more frequently in Set 1 than in Set 2, 
whereas c was chosen more frequently in Set 
2 than in Set 1. Both differences are statisti­
cally significant, p < .01. Moreover, the re­
placement of p by q actually reversed the 
similarity ordering : In Set 1, b is more similar 
to a than c, whereas in Set 2, c is more similar 
to a than b. 

A more extensive test of the diagnosticity 
hypothesis was conducted using semantic 
rather than visual stimuli. The experimental 
design was essentially the same, except that 
countries served as stimuli instead of faces. 
Twenty pairs of matched sets of four countries 
of the form { a,b,c,p} and { a,b,c,q} were con­
structed. An example of two matched sets is 
presented in Figure 5. 

Note that the two matched sets (1 and 2) 
differ only by one element (p and q). The 
sets were constructed so that a (in this case 
Austria) is likely to be grouped with b (e.g., 
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Sweden) in Set 1, and with c (e.g., Hungary) 
in Set 2. To validate this assumption, we pre­
sented two groups of 25 subjects with all sets 
of four countries and asked them to partition 
each quadruple into two pairs. Each group 
received one of the two matched quadruples, 
which were displayed in a row in random 
order. The results confirmed our prior hypothe­
sis regarding the grouping of countries. In 
every case but one, the replacement of p by q 
changed the pairing of the target country in 
the predicted direction, p < .01 by sign test. 
For example, Austria was paired with Sweden 
by 60% of the subjects in Set 1, and it was 
paired with Hungary by 96% of the subjects 
in Set 2. 

To test the diagnosticity hypothesis, we 
presented two groups of 35 subjects with 20 
sets of four countries in the format displayed 
in Figure 5. These subjects were asked to 
select, for each quadruple, the country in the 
choice set that was most similar to the target 
country. Each group received exactly one 
quadruple from each pair. If the similarity 
of b to a, say, is independent of the choice set, 
then the proportion of subjects who chose b 
rather than c as most similar to a should be 
the same regardless of whether the third ele­
ment in the choice set is p or q. For example, 
the proportion of subjects who select Sweden 
rather than Hungary as most similar to 
Austria should be independent of whether the 
odd element in the choice set is Norway or 
Poland. 

In contrast, the diagnosticity hypothesis 
implies that the change in grouping, induced 
by the substitution of the odd element, will 
change the similarities in a predictable manner. 
Recall that in Set 1 Poland was paired with 
Hungary, and Austria with Sweden, while in 
Set 2 Norway was paired with Sweden, and 
Austria with Hungary. Hence, the proportion 
of subjects who select Sweden rather than 
Hungary (as most similar to Austria) should 
be higher in Set 1 than in Set 2. This predic­
tion is strongly supported by the data in 
Figure 5, which show that Sweden was selected 
more frequently than Hungary in Set 1, while 
Hungary was selected more frequently than 
Sweden in Set 2. 

Let b(p) denote the percentage of subjects 
who chose country b as most similar to a when 

a 
Austria 

Set 1 
b p c 

Sweden Poland Hungary 
49% 15% 36% 

a 
Austria 

Set 2 
b q c 

Sweden Norway Hungary 
14% 26% 60% 

Figure 5. Two sets of countries used to test the diagnos­
ticity hypothesis. The percentage of subjects who se­
lected each country (as most similar to Austria) is 
presented below the country. 

the odd element in the choice set is p, and so 
on. As in the above examples, the notation is 
chosen so that b is generally grouped with q, 
and c is generally grouped with p. The dif­
ferences b(p) - b(q) and c(q) - c(p), there­
fore, reflect the effects of the odd elements, p 
and q, on the similarity of b and c to the 
target a. In the absence of context effects, 
both differences should equal 0, while under 
the diagnosticity hypothesis both differences 
should be positive. In Figure 5, for example, 
b(p) - b(q) = 49- 14 = 35, and c(q) - c(p) 
= 60 - 36 = 24. The average difference, across 
all pairs of quadruples, equals 9%, which is 
significantly positive, t(19) = 3.65, p < .01. 

Several variations of the experiment did not 
alter the nature of the results, The diagnosti­
city hypothesis was also confirmed when (i) 
each choice set contained four elements, rather 
than three, (ii) the subjects were instructed to 
rank the elements of each choice set according 
to their similarity to the target, rather than 
to select the most similar element, and (iii) the 
target consisted of two elements, and the sub­
jects were instructed to select one element of 
the choice set that was most similar to the 
two target elements. For further details, see 
Tversky and Gati (in press). 

The Extension E .ff ect 

Recall that the diagnosticity of features is 
determined by the classifications that are based 
on them. Features that are shared by all the 
objects under consideration cannot be used to 
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classify these objects and are, therefore, devoid 
of diagnostic value. When the context is ex­
tended by the enlargement of the object set, 
some features that had been shared by all 
objects in the original context may not be 
shared by all objects in the broader context. 
These features then acquire diagnostic value 
and increase the similarity of the objects that 
share them. Thus, the similarity of a pair of 
objects in the original context will usually be 
smaller than their similarity in the extended 
context. 

Essentially the same account was proposed 
and supported by Sjoberg (Note 1) in studies 
of similarity between animals, and between 
musical instruments. For example, Sjoberg 
showed that the similarities between string 
instruments (banjo, violin, harp, electric guitar) 
were increased when a wind instrument ( clari­
net) was added to this set. Since the string 
instruments are more similar to each other 
than to the clarinet, however, the above result 
may be attributed, in part at least, to subjects' 
tendency to standardize the response scale, 
that is, to produce the same average similarity 
for any set of comparisons. 

This effect can be eliminated by the use of 
a somewhat different design, employed in the 
following study. Subjects were presented with 
pairs of countries having a common border 
and assessed their similarity on a 20-point 
scale. Four sets of eight pairs were con­
structed. Set 1 contained eight pairs of Euro­
pean countries (e.g., Italy-Switzerland). Set 
2 contained eight pairs of American countries 
(e.g., Brazil-Uruguay). Set 3 contained four 
pairs from Set 1 and four pairs from Set 2, 
while Set 4 contained the remaining pairs from 
Sets 1 and 2. Each one of the four sets was 
presented to a different group of 30-36 subjects. 

According to the diagnosticity hypothesis, 
the features "European" and "American" 
have no diagnostic value in Sets 1 and 2, al­
though they both have a diagnostic value in 
Sets 3 and 4. Consequently, the overall average 
similarity in the heterogeneous sets (3 and 4) 
is expected to be higher than the overall aver­
age similarity in the homogeneous sets {1 and 
2). This prediction was confirmed by the data, 
t(15) = 2.11, p < .05. 

In the present study all similarity assess­
ments involve only homogeneous pairs (i.e., 

pairs of countries from the same continent 
sharing a common border). Unlike Sjoberg's 
(Note 1) study, which extended the context 
by introducing nonhomogeneous pairs, our 
experiment extended the context by construct­
ing heterogeneous sets composed of homogene­
ous pairs. Hence, the increase of similarity 
with the enlargement of context, observed in 
the present study, cannot be explained by 
subjects' tendency to equate the average 
similarity for any set of assessments. 

The Two Faces of Similarity 

According to the present analysis, the sali­
ence of features has two components: intensity 
and diagnosticity. The intensity of a feature 
is determined by perceptual and cognitive 
factors that are relatively stable across con­
texts. The diagnostic , value of a feature is 
determined by the prevalence of the classifica­
tions that are based on it, which change with 
the context. The effects of context on similar­
ity, therefore, are treated as changes in the 
diagnostic value of features induced by the 
respective changes in the grouping of the 
objects. 

This account was supported by the experi­
mental finding that changes in grouping (pro­
duced by the replacement or addition of ob­
jects) lead to corresponding changes in the 
similarity of the objects. These results shed 
light on the dynamic interplay between simi­
larity and classification. It is generally assumed 
that classifications are determined by similari­
ties among the objects. The preceding discus­
sion supports the converse hypothesis: that 
the similarity of objects is modified by the 
manner in which they are classified. Thus, 
similarity has two faces: causal and derivative. 
It serves as a basis for the classification of 
objects, but it is also influenced by the adopted 
classification. The diagnosticity principle which 
underlies this process may provide a key to 
the analysis of the effects of context on 
similarity. 

Discussion 

In this section we relate the present de­
velopment to the representation of objects in 
terms of clusters and trees, discuss the con-
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Table 1 
ADCLUS Analysis of the Similarities Among the Integers 0 Through 9 
(from Shepard & Arabie, Note 2) 

Rank Weight Elements of subset 

1st .305 2 4 8 
2nd .288 6 7 8 9 
3rd .279 3 6 9 
4th .202 0 1 2 
5th .202 1 3 5 7 9 
6th .175 1 2 3 
7th .163 5 6 7 
8th .160 0 1 
9th .146 0 1 2 3 4 

cepts of prototypicality and family resem­
blance, and comment on the relation between 
similarity and metaphor. 

Features, Clusters, and Trees 

There is a well-known correspondence be­
tween features or properties of objects and the 
classes to which the objects belong. A red 
flower, for example, can be characterized as 
having the feature "red," or as being a member 
of the class of red objects. In this manner we 
associate with every feature in <I> the class of 
objects in ..1 which possesses that feature. This 
correspondence between features and classes 
provides a direct link between the present 
theory and the clustering approach to the 
representation of proximity data. 

In the contrast model, the similarity be­
tween objects is expressed as a function of 
their common and distinctive features. Rela­
tions among overlapping sets are often repre­
sented in a Venn diagram (see Figure 1). How­
ever, this representation becomes cumbersome 
when the number of objects exceeds four or 
five. To obtain useful graphic representations 
of the contrast model, two alternative simpli­
fications are entertained. 

First, suppose the objects under study are 
all equal in prominence, that is, f(A) = f(B) 
for all a,b in .1. Although this assumption is 
not strictly valid in general, it may serve as a 
reasonable approximation in certain contexts. 
Assuming feature additivity and symmetry, 

Interpretation of subset 

powers of two 
large numbers 
multiples of three 
very small numbers 
odd numbers 
small nonzero numbers 
middle numbers (largish) 
additive and multiplicative identities 
smallish numbers 

we obtain 

S(a,b) = 8f(A f\ B) - f(A - B) - f(B - A) 

= 8f(A (\B) + 2f(A (\B) - f(A- B) 
- f(B -A) - 2f(A (\B) 

= (8 + 2)f(A (\B) - f(A) - f(B) 
=Af(A (\B) + p,, 

since f(A) = f(B) for all a,b in .1. Under the 
present assumptions, therefore, similarity be­
tween objects is a linear function of the mea­
sure of their common features. 

Since f is an additive measure, f(A(l B) is 
expressible as the sum of the measures of all 
the features that belong to both a and b. For 
each subset A of .1, let <I>(A) denote the set of 
features that are shared by all objects in A, 
and are not shared by any object that does 
not belong to A. Hence, 

S(a,b) = Xf(A (\B) + p, 

= X(~f(X)) + p, 

XeA(\ B 
= X(~f(<I>(A))) + p. 

A::::> {a,b}. 

Since the summation ranges over all subsets of 
..1 that include both a and b, the similarity 
between objects can be expressed as the sum 
of the weights associated with all the sets that 
include both objects. 

This form is essentially identical to the addi­
tive clustering model proposed by Shepard and 
Arabie (Note 2). These investigators have de­
veloped a computer program, ADCLUS, which 
selects a relatively small collection of subsets 
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Figure 6. The representation of letter similarity as an additive (feature) tree. From Sattath and Tversky 
(in press). 

and assigns weight to each subset so as to 
maximize the proportion of (similarity) vari­
ance accounted for by the model. Shepard and 
Arabie (Note 2) applied ADCLUS to several 

studies including Shepard, Kilpatric, and 
Cunningham's (1975) on judgments of simi­
larity between the integers 0 through 9 with 
respect to their abstract numerical character. 
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A solution with 19 subsets accounted for 95% 
of the variance. The nine major subsets (with 
the largest weights) are displayed in Table 1 
along with a suggested interpretation. Note 
that all the major subsets are readily interpret­
able, and they are overlapping rather than 
hierarchical. 

The above model expresses similarity in 
terms of common features only. Alternatively, 
similarity may be expressed exclusively in 
terms of distinctive features. It has been shown 
by Sattath (Note 3) that for any symmetric 
contrast model with an additive measure f, 
there exists a measure g defined on the same 
feature space such that 

S(a,b) = 8f(Ai\ B) - f(A- B) - f(B- A) 
= >. - g(A - B) - g(B -A) 

for some >. > 0. 

This result allows a simple representation of 
dissimilarity whenever the feature space <P is 
a tree (i.e., whenever any three objects in J1 
can be labeled so that A!\ B = A !\ C C 
B !\ C). Figure 6 presents an example of a 
feature tree, constructed by Sattath and 
Tversky (in press) from judged similarities 
between lowercase letters, obtained by Kuen­
napas and Janson (1969). The major branches 
are labeled to facilitate the interpretation of 
the tree. 

Each (horizontal) arc in the graph repre­
sents the set of features shared by all the 
objects (i.e., letters) that follow from that arc, 
and the arc length corresponds to the measure 
of that set. The features of an object are the 
features of all the arcs which lead to that 
object, and its measure is its (horizontal) dis­
tance to the root. The tree distance between 
objects a and b is the (horizontal) length of 
the path joining them, that is, f(A - B) + 
f(B - A). Hence, if the contrast model holds, 
a = (3, and <P is a tree, then dissimilarity (i.e., 
- S) is expressible as tree distance. 

A feature tree can also be interpreted as a 
hierarchical clustering scheme where each arc 
length represents the weight of the cluster 
consisting of all the objects that follow from 
that arc. Note that the tree in Figure 6 differs 
from the common hierarchical clustering tree 
in that the branches differ in length. Sattath 
and Tversky (in press) describe a computer 

program, ADDTREE, for the construction of 
additive feature trees from similarity data and 
discuss its relation to other scaling methods. 

It follows readily from the above discussion 
that if we assume both that the feature set <P 
is a tree, and that f(A) = f(B) for all a,b in J1, 
then the contrast model reduces to the well­
known hierarchical clustering scheme. Hence, 
the additive clustering model (Shepard & 
Arabie, Note 2), the additive similarity tree 
(Sattath & Tversky, in press), and the hier­
archical clustering scheme (Johnson, 1967) are 
all special cases of the contrast model. These 
scaling models can thus be used to discover 
the common and distinctive features of the 
objects under study. The present development, 
in turn, provides theoretical foundations for 
the analysis of set-theoretical methods for the 
representation of proximities. 

Similarity, Prototypicality, and Family 
Resemblance 

Similarity is a relation of proximity that 
holds between two objects. There exist other 
proximity relations such as prototypicality and 
representativeness that hold between an object 
and a class. Intuitively, an object is proto­
typical if it exemplifies the category to which 
it belongs. Note that the prototype is not 
necessarily the most typical or frequent mem­
ber of its class. Recent research has demon­
strated the importance of prototypicality or 
representativeness in perceptual learning (Pos­
ner & Keele, 1968; Reed, 1972), inductive 
inference (Kahneman & Tversky, 1973), se­
mantic memory (Smith, Rips, & Shoben, 
1974), and the formation of categories (Rosch 
& Mervis, 1975). The following discussion 
analyzes the relations of prototypicality and 
family resemblance in terms of the present 
theory of similarity. 

Let P(a,A) denote the (degree of) proto­
typicality of object a with respect to class A, 
with cardinality n, defined by 

P(a,A) = Pn(X~f(Ai\ B)- ~(f(A- B) 
+ f(B- A))), 

where the summations are over all b in A. 
Thus, P(a,A) is defined as a linear combina­
tion (i.e., a contrast) of the measures of the 
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features of a that are shared with the elements 
of A and the features of a that are not shared 
with the elements of A. An element a of A is 
a prototype if it maximizes P(a,A). Note that 
a class may have more than one prototype. 

The factor Pn reflects the effect of category 
size on prototypicality, and the constant A 
determines the relative weights of the common 
and the distinctive features. If Pn = 1/n, A = 8, 
and a = {3 = 1, then P(a,A) = 1/n~S(a,b) 
(i.e., the prototypicality of a with respect to 
A equals the average similarity of a to all 
members of A). However, in line with the 
focusing hypotheses discussed earlier, it appears 
likely that the common features are weighted 
more heavily in judgments of prototypicality 
than in judgments of similarity. 

Some evidence concerning the validity of the 
proposed measure was reported by Rosch and 
Mervis (1975). They selected 20 objects from 
each one of six categories (furniture, vehicle, 
fruit, weapon, vegetable, clothing) and in­
structed subjects to list the attributes associ­
ated with each one of the objects. The proto­
typicality of an object was defined by the 
number of attributes or features it shared 
with each member of the category. Hence, the 
prototypicality of a with respect to A was 
defined by ~N(a,b), where N(a,b) denotes the 
number of attributes shared by a and b, and 
the summation ranges over all bin A. Clearly, 
the measure of prototypicality employed by 
Rosch and Mervis (1975) is a special case of 
the proposed measure, where A is large and 
f(Afl B)= N(a,b). 

These investigators also obtained direct 
measures of prototypicality by instructing 
subjects to rate each object on a 7-point scale 
according to the extent to which it fits the 
"idea or image of the meaning of the category." 
The rank correlations between these ratings 
and the above measure were quite high in all 
categories: furniture, .88; vehicle, .92; weapon, 
. 94; fruit, .85; vegetable, .84; clothing, .91. 
The rated prototypicality of an object in a 
category, therefore, is predictable by the 
number of features it shares with other mem­
bers of that category. 

In contrast to the view that natural cate­
gories are definable by a conjunction of critical 
features, Wittgenstein (1953) argued that 
several natural categories (e.g., a game) do 
not have any attribute that is shared by all 

their members, and by them alone. Wittgen­
stein proposed that natural categories and con­
cepts are commonly characterized and under­
stood in terms of family resemblance, that is, 
a network of similarity relations that link the 
various members of the class. The importance 
of family resemblance in the formation and 
processing of categories has been effectively 
underscored by the work of Rosch and her 
collaborators (Rosch, 1973; Rosch & Mervis, 
1975; Rosch, Mervis, Gray, Johnson, & Boyes­
Braem, 1976). This research demonstrated 
that both natural and artificial categories are 
commonly perceived and organized in terms 
of prototypes, or focal elements, and some 
measure of proximity from the prototypes. 
Furthermore, it lent substantial support to 
the claim that people structure their world in 
terms of basic semantic categories that repre­
sent an optimal level of abstraction. Chair, 
for example, is a basic category; furniture is 
too general and kitchen chair is too specific. 
Similarly, car is a basic category; vehicle is 
too general and sedan is too specific. Rosch 
argued that the basic categories are selected 
so as to maximize family resemblance-defined 
in terms of cue validity. 

The present development suggests the fol­
lowing measure for family resemblance, or cate­
gory resemblance. Let A be some subset of A 
with cardinality n. The category resemblance 
of A denoted R(A) is defined by 

R(A) = rn(A2;f(Afl B)- 2;(f(A- B) 
+ f(B- A))), 

the summations being over all a,b in A. Hence, 
category resemblance is a linear combination 
of the measures of the common and the dis­
tinctive features of all pairs of objects in that 
category. The factor rn reflects the effect of 
category size on category resemblance, and the 
constant A determines the relative weight of 
the common and the distinctive features. If 
A = 8, a = {3 = 1, and rn = 2/n(n - 1), then 

R( ) 
_ ~S(a,b) 

A - (~) ' 

the summation being over all a,b in A; that is, 
category resemblance equals average similarity 
between all members of A. Although the pro­
posed measure of family resemblance differs 
from Rosch's, it nevertheless captures her 
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basic notion that family resemblance is highest 
for those categories which "have the most 
attributes common to members of the category 
and the least attributes shared with members 
of other categories" (Rosch et al., 1976, p. 
435). 

The maximization of category resemblance 
could be used to explain the formation of 
categories. Thus, the set A rather than r is 
selected as a natural category whenever R(A) 
> R(r). Equivalently, an object a is added to 
a category A whenever R({A U a}) > R(A). 
The fact that the preferred (basic) categories 
are neither the most inclusive nor the most 
specific imposes certain constraints on rn. 

If rn = 2/n(n - 1) then R(A) equals the 
average similarity between all members of A. 
This index leads to the selection of minimal 
categories because average similarity can gen­
erally be increased by deleting elements. The 
average similarity between sedans, for ex­
ample, is surely greater than the average 
similarity between cars; nevertheless, car 
rather than sedan serves as a basic category. 
If rn = 1 then R(A) equals the sum of the 
similarities between all members of A. This 
index leads to the selection of maximal cate­
gories because the addition of objects increases 
total similarity, provided S is nonnegative. 

In order to explain the formation of inter­
mediate-level categories, therefore, category re­
semblance must be a compromise between an 
average and a sum. That is, rn must be a de­
creasing function of n that exceeds 2/n(n - 1). 
In this case, R(A) increases with category size 
whenever average similarity is held constant, 
and vice versa. Thus, a considerable increase 
in the extension of a category could outweigh 
a small reduction in average similarity. 

Although the concepts of similarity, proto­
typicality, and family resemblance are inti­
mately connected, they have not been previ­
ously related in a formal explicit manner. The 
present development offers explications of 
similarity, prototypicality, and family resem­
blance within a unified framework, in which 
they are viewed as contrasts, or linear combina­
tions, of the measures of the appropriate sets 
of common and distinctive features. 

Similes and Metaphors 

Similes and metaphors are essential ingredi­
ents of creative verbal expression. Perhaps the 

most interesting property of metaphoric ex­
pressions is that despite their novelty and 
nonliteral nature, they are usually understand­
able and often informative. For example, the 
statement that Mr. X resembles a bulldozer is 
readily understood as saying that Mr. X is a 
gross, powerful person who overcomes all ob­
stacles in getting a job done. An adequate 
analysis of connotative meaning should account 
for man's ability to interpret metaphors with­
out specific prior learning. Since the message 
conveyed by such expressions is often pointed 
and specific, they cannot be explained in terms 
of a few generalized dimensions of connotative 
meaning, such as evaluation or potency (Os­
good, 1962). It appears that people interpret 
similes by scanning the feature space and 
selecting the features of the referent that are 
applicable to the subject (e.g., by selecting 
features of the bulldozer that are applicable 
to the person). The nature of this process is 
left to be explained. 

There is a close tie between the assessment 
of similarity and the interpretation of meta­
phors. In judgments of similarity one assumes 
a particular feature space, or a frame of 
reference, and assesses the quality of the 
match between the subject and the referent. 
In the interpretation of similes, one assumes 
a resemblance between the subject and the 
referent and searches for an interpretation of 
the space that would maximize the quality of 
the match. The same pair of objects, therefore, 
can be viewed as similar or different depending 
on the choice of a frame of reference. 

One characteristic of good metaphors is the 
contrast between the prior, literal interpreta­
tion, and the posterior, metaphoric interpreta­
tion. Metaphors that are too transparent are 
uninteresting; obscure metaphors are uninter­
pretable. A good metaphor is like a good 
detective story. The solution should not be 
apparent in advance to maintain the reader's 
interest, yet it should seem plausible after the 
fact to maintain coherence of the story. Con­
sider the simile "An essay is like a fish." At 
first, the statement is puzzling. An essay is not 
expected to be fishy, slippery, or wet. The 
puzzle is resolved when we recall that {like a 
fish) an essay has a head and a body, and it 
occasionally ends with a flip of the tail. 
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Appendix 

An Axiomatic Theory of Similarity 

Let~ = { a,b,c, ..• } be a collection of objects 
characterized as sets of features, and let A,B,C, 
denote the sets of features associated with 
a,b,c, respectively. Let s(a,b) be an ordinal 
measure of the similarity of a to b, defined for 
all distinct a, b in ~. The present theory is 
based on the following five axioms. Since the 
first three axioms are discussed in the paper, 
they are merely restated here; the remaining 
axioms are briefly discussed. 

1. Matching: s(a,b) = F(Arl B, A-B, 
B - A) where F is some real-valued function in 
three arguments. 

2. Monotonicity: s(a,b) ~ s(a,c) whenever 
A (l B ::) A (l C, A - B C A - C, and 
B - A C C - A. Moreover, if either inclusion 
is proper then the inequality is strict. 

Let <I> be the set of all features associated 
with the objects of ~. and let X, Y,Z, etc. de­
note subsets of cf>. The expression F (X, Y,Z) is 
defined whenever there exist a,b in~ such that 
A (l B = X, A - B = Y, and B - A = Z, 
whence s(a,b) = F(X,Y,Z). Define V"-' W if 
one or more of the following hold for some 
X,Y,Z: F(V,Y,Z) = F(W,Y,Z), F(X,V,Z) 
= F(X,W,Z), F(X,Y,V) = F(X,Y,W). The 
pairs (a, b) and (c,d) agree on one, two, or three 
components, respectively, whenever one, two, 
or three of the following hold: (A (l B) 
,......, (C (l D), (A - B)~ (C - D), (B - A) 
~(D-C). 

3. Independence: Suppose the pairs (a,b) 
and (c,d), as well as the pairs (a',b') and (c', 
d'), agree on the same two components, while 
the pairs (a, b) and (a', b'), as well as the pairs 
(c,d) and (c',d'), agree on the remaining (third) 
component. Then 

s(a,b) ~ s(a',b') iff s(c,d) ~ s(c',d'). 

4. Solvability : 
(i). For all pairs (a, b), (c,d), (e,f), of objects 

in ~ there exists a pair (p,q) which agrees with 
them, respectively, on the first, second, and 
third component, that is, P (l Q ~A (l B, 
P- Q ~C-D, and Q- P~ F-E. 

(ii). Suppose s(a,b) > t > s(c,d). Then there 
exist e,f with s(e,f) = t, such that if (a,b) and 
(c,d) agree on one or two components, then 
(e,f) agrees with them on these components. 

(iii). There exist pairs (a, b) and (c,d) of ob­
jects in~ that do not agree on any component. 

Unlike the other axioms, solvability does not 
impose constraints on the similarity order; it 

merely asserts that the structure under study is 
sufficiently rich so that certain equations can 
be solved. The first part of Axiom 4 is analogous 
to the existence of a factorial structure. The 
second part of the axiom implies that the range 
of s is a real interval: There exist objects in ~ 
whose similarity matches any real value that 
is bounded by two similarities. The third part 
of Axiom 4 ensures that all arguments of F are 
essential. 

Let cf>1. cf>2, and cf>3 be the sets of features that 
appear, respectively, as first, second, or third 
arguments of F. (Note that cf>2 = cf>3.) Suppose 
X and X' belong to cf>1, while Y and Y' belong 
to cf>2. Define (X,X'h ~ (Y,Y')2 whenever the 
two intervals are matched, that is, whenever 
there exist pairs (a,b) and (a',b') of equally 
similar objects in ~ which agree on the third 
factor. Thus, (X,X'h ~ (Y, Y'h whenever 

s(a,b) = F(X,Y,Z) = F(X',Y',Z) = s(a',b'). 

This definition is readily extended to any other 
pair of factors. Next, define (V, V'); ~ (W, 
W');, i = 1,2,3 whenever (V, V');~ (X,X')i 
~ (W,W');, for some (X,X')j, j ~ i. Thus, two 
intervals on the same factor are equivalent if 
both match the same interval on another fac­
tor. The following invariance axiom asserts 
that if two intervals are equivalent on one fac­
tor, they are also equivalent on another factor. 

5. Invariance: Suppose V,V', W,W' belong 
to both cf>; and <l>j, i,j = 1,2,3. Then 

(V,V');~ (W,W'); iff (V,V')i ~ (W,W')i· 

Representation Theorem 

Suppose Axioms 1-5 hold. Then there exist 
a similarity scale S and a nonnegative scale f 
such that for all a,b,c,d in~ 

(i). S(a,b) ~ S(c,d) iff s(a,b) ~ s(c,d), 
(ii). S(a,b) = Of(A (l B) - af(A- B) -

,8f(B- A), for some O,a,,8 ~ 0. 
(iii). f and S are interval scales. 

While a self-contained proof of the repre­
sentation theorem is quite long, the theorem 
can be readily reduced to previous results. 

Recall that cf>; is the set of features that ap­
pear as the ith argument ofF, and let if; = cf>;/ 
~. i = 1,2,3. Thus, if; is the set of equivalence 
classes of cf>1 with respect to~. It follows from 
Axioms 1 and 3 that each i'1 is well defined, 
and it follows from Axiom 4 that if = i'1 X i'2 
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X i'3 is equivalent to the domain of F. We 
wish to show that if, ordered by F, is a three­
component, additive conjoint structure, in the 
sense of Krantz, Luce, Suppes, and Tversky 
(1971, Section 6.11.1). 

This result, however, follows from the analy­
sis of decomposable similarity structures, de­
veloped by Tversky and Krantz (1970). In 
particular, the proof of part (c) of Theorem 1 in 
that paper implies that, under Axioms 1, 3, and 
4, there exist nonnegative functions fi defined 
on Wi> i = 1,2,3, so that for all a,b,c,d in d 

s(a,b) 2 s(c,d) iff S(a,b) 2 S(c,d) 

whereS(a,b) = ft(AI\ B) 
+ f2(A- B)+ f3(B- A), 

and f1, f2, f3 are interval scales with a common 
unit. 

According to Axiom 5, the equivalence of in­
tervals is preserved across factors. That is, for 
all V,V', W, W' in <I>i 1\ <l>j, i,j, = 1,2,3, 

fi(V)- fi(V') = fi(W) - fi(W') iff 
fi(V)- fi(V') = fi(W)- fi(W'). 

Hence by part (i) of Theorem 6.15 of Krantz 
et al. (1971), there exist a scale f and constants 
Oi such that fi (X) = Oif (X), i = 1,2,3. Finally, 
by Axiom 2, S increases in ft and decreases in 
f2 and f3• Hence, it is expressible as 

S(a,b) = Of(AI\ B)- af(A- B) 
- ,6f(B- A), 

for some nonnegative constants 8,a,,6. 
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